
EXERCICES MPSI B4 SERIES R. FERRÉOL 16/17

I) SÉRIES À TERMES POSITIFS.

1. Étudier la nature des SATP de terme général un suivantes (a > 0) :

(a)
1

aαn

(b)
an

n!

(c)
n!

nn

(d)
1! + 2! + ...+ n!

(n+ p)!
, p entier naturel.

(e)
2n (sinα)

2n

n2
, α ∈ [0, π[ .

(f)
1

alnn

(g)
1

a
√
n

(h)
1

anα

(i)
(na)

n

n!

(j)
logn a

loga n
(a �= 1)

(k)
1

n
1+
1

n

(l)
�

n

n+ 1

�nα

2. : Constante d’Euler.

(a) Etudier la nature de la suite (un) = (hn − lnn) en étudiant la nature de la série Σ(un − un−1) ( hn =
n�

k=1

1

k
).

(b) * Etudier la nature de Σ
1

ahn
, a > 0.

3. : Calculs de sommes.

Justifier la convergence et calculer les sommes suivantes :

(a)
∞�

n=0

n

n4 + n2 + 1
(décomposer en éléments simples de deuxième espèce).

(b)
∞�

n=0

n2 − 1
n4 + n2 + 1

.

(c)
∞�

n=1

6n

(3n+1 − 2n+1) (3n − 2n) .

REP : 1/2,1/2, 2.

4. * : Troisième démonstration de la nature des séries de Riemann.

(a) Démontrer que Σ
1

n
DV en utilisant

1

k − 1 +
1

k
+

1

k + 1
�
3

k

(b) Démontrer que Σ
1

nα
CV pour α > 1 en utilisant

1

kα
+

1

(k + 1)α
�
2

kα

1
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5. Série des max, des min dans le cas positif.

Soient Σan et Σbn deux SATP.

(a) Si ces deux séries sont convergentes, que dire de Σmax (an, bn) ?

(b) Si ces deux séries sont divergentes, que dire de Σmin (an, bn) ?

6. Soit σ une bijection de N∗ dans lui-même.

(a) Montrer que Σ
1

(σ (n))2
CV.

(b) Montrer que Σ
1

σ (n)
DV.

7. :

(a) On suppose que un = a+
b

n
+O

�
1

n2

�
. Démontrer que Σun CV ssi a = b = 0.

(b) Déterminer les polynômes réels P tels que la série de t.g. un =
4
√
n4 + 3n2 − 3

�
P (n) est convergente.

Indication :

Montrer que P = X3 + aX2 + bX + c, et qu’alors un = −
a

3
+

�−b
3
+
a2

9
+
3

4

�
1

n
+O

�
1

n2

�
.

8. En comparant avec une intégrale, déterminer la partie entière de 1 +
1√
2
+

1√
3
+ ...+

1√
10000

.

REP : 198.

9. * : Démonstration de
∞�

n=1

1

n2
=
π2

6
.

(a) Soit θ �= 0 [π] ; écrire cle développement de sin ((2n+ 1) θ) en fonction de sin θ et cot θ.

(b) En déduire un polynôme Pn de degré n dont les racines sont les cot2
kπ

2n+ 1
, 1� k � n.

(c) En déduire
n�

k=1

cot2
kπ

2n+ 1
puis

n�

k=1

1

sin2
kπ

2n+ 1

.

(d) En déduire
∞�

n=1

1

n2
=
π2

6
en utilisant que si α ∈]0, π/2[, cot2 α < 1

α2
<

1

sin2 α
.

10. Sachant que
∞�

n=1

1

n2
=
π2

6
, donner les valeurs de

∞�

p=0

1

(2p+ 1)2
et

∞�

n=1

(−1)n−1
n2

.

11. : A-t-on : (1) Σun CV ⇔ (2) un <<
1

n
??

(a) Montrer que si (un) est décroissante positive (1) =⇒ (2) est vrai.

Méthode 1 : minorer
2n�

k=n+1

uk

Méthode 2 : calculer Sn =
n�

k=1

k (uk − uk+1) ; justifier que (Sn) possède une limite ; montrer que cette limite est

forcément finie, et conclure.

(b) Montrer que (1)⇒ (2) est faux, même pour des SATP

REP : un =
1

n
si n est une puissance de 2, et un = 0 sinon, ou si on veut un > 0, un =

1

n
si n est une puissance

de 2, et un =
1

2n
sinon.
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(c) Montrer que (2)⇒ (1) est faux, même pour des SATP (penser aux séries de Bertrand).

12. * : Formule de Stirling.

(a) En comparant avec une intégrale, donner un équivalent simple de lnn! (=
n�

k=1

ln k !). L’exponentielle de cet

équivalent est-il un équivalent de n! ?

(b) Montrer que la comparaison avec une intégrale permet de montrer que lnn! = n lnn− n+ o (n) .
(c) On conjecture que lnn! = n lnn− n+ a lnn+ b+ o (1) .

Posons un = lnn! − n lnn+ n − a lnn, cherchons un équivalent de un+1 − un. En déduire que a = 1/2. Montrer
que pour a = 1/2, la conjecture est exacte.

(d) En déduire que n! ∼
�n
e

�n√
neb, et que

(2n)!

n!
∼
√
2

�
4n

e

�n
.

(e) Sachant que
(2n)!

22n (n!)2
∼ 1√

nπ
(résultat obtenu par les intégrales de Wallis), démontrer que eb =

√
2π et en déduire

la formule de Stirling.

13. * : Amélioration du critère de D’Alembert : le critère de Duhamel.

Soient Σun et Σvn deux séries à termes strictement positifs.

(a) Montrer que si APCR,
un+1
un

�
vn+1
vn

, alors la convergence de Σvn entraîne celle de Σun et que la divergence de

Σun entraîne celle de Σvn.

(b) Soit vn =
1

nβ
; montrer que

vn+1
vn

= 1− β

n
+ o

�
1

n

�
.

(c) Soit Σun une SATP ; on suppose que
un+1
un

= 1− α

n
+ o

�
1

n

�
(on est donc dans le cas douteux de D’Alembert).

Montrer que si α > 1, alors Σun CV et que si α < 1, alors Σun DV.

(d) Appliquer ce critère à un =
1.3.... (2n− 1)
2.4....2n

, puis un =
1.3.... (2n− 1)
2.4....(2n+ 2)

.

14. * : Suite de 13, autre critère dans le cas douteux de d’Alembert.

(a) Soit Σun une SATP ; on suppose que
un+1
un

= 1− εn, avec εn > 0, lim εn = 0.

Montrer que si εn >> 1

n
, alors Σun CV et que si εn << 1

n
, alors Σun DV (retenir qu’il y a convergence si

un+1
un

ne tend pas "trop vite" vers 1, moins vite que
1

n
ne tend vers 0).

(b) Appliquer à Σ 1

a
√
n
, a > 1.

15. * : Critère fin de Duhamel.

(a) Soit Σun une SATP ; on suppose que
un+1
un

= 1− α
n
+O

�
1

n2

�
. Montrer qu’il existe un réel a > 0 tel que un ˜

a

nα
.

Indications : Poser vn =
un
nα

et étudier la série de terme général ln vn+1 − ln vn.

(b) En déduire que Σun CV ssi α > 1.

16. : Sur les produits infinis.

(a) Vérifier que pour tout réel x, ex � 1 + x.

(b) Soit (un) une suite à termes � 0 ; on pose sn = u0 + u1 + ...+ un ,pn = (1 + u0) (1 + u1) ... (1 + un) ; vérifier que
sn � pn � e

sn

(c) En déduire que (pn) CV ssi Σun CV.

(d) Calculer lim pn pour un =
1

22n
.
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17. * : Sur la série Σ
un
Sn
.

Soit Σun une série à termes strictement positifs, et Sn =
n�

k=n0

uk.

(a) Montrer que si Σun CV alors Σ
un
Sn

aussi.

(b) Donner un exemple où Σ
un
Sn

est grossièrement divergente.

(c) Montrer que si (un) est majorée et Σun DV alors Σ
un
Sn

DV ; indication : ln
�
Sn−1
Sn

�
∼ −un

Sn
.

(d) Appliquer ceci pour pour montrer que Σ
1

n lnn
DV.

(e) Montrer que si Σun DV alors Σ
un

(Sn)
2

CV ; indication :
un
S2n

�
1

Sn−1
− 1

Sn

(f) Appliquer ceci pour montrer que Σ
1

n (lnn)2
CV.

18. * : Critère de la loupe, ou critère de condensation.

(a) Soit (un)n�1 une suite décroisante positive ; on pose vn = 2nu2n : montrer que Σun CV ⇔ Σvn CV et que dans
le cas convergent,

1

2

∞�

n=1

vn �
∞�

n=1

un �
∞�

n=1

vn

(b) Appliquer ceci pour une quatrième démonstration de la nature des séries de Riemann.

19. * : Soit (un) une suite à termes positifs telle que Σn2u2n converge. La série Σun est-elle forcément convergente ?

(Penser à l’inégalité de Cauchy-Schwarz).

II) SÉRIES À TERMES QUELCONQUES

20. :

(a) Donner un exemple où Σ(un + un+1) CV mais Σun DV.

(b) Montrer que Σun CV ⇔ Σ(un + un+1) CV et ........... (condition supplémentaire à trouver).

(c) En déduire une nouvelle démonstration du théorème des séries alternées.

21. : Série des max.

Soient Σan et Σbn deux séries à termes réels. Si ces deux séries sont convergentes, que dire de Σmax (an, bn) ?

22. : Fonctions génératrices des coefficients binomiaux.

(a) La fonction horizontale fn (x) =
n�

k=0

�
n
k

�
xk est bien connue... (donner la réponse tout de même).

(b) La fonction verticale est gn (x) =
+∞�

k=0

�
n+ k
n

�
xk.

i. Vérifier que gn est définie au moins sur ]−1, 1[ .
ii. Trouver grâce à la relation de Pascal une relation entre gn (x) et gn−1 (x) .

iii. En déduire que gn (x) =
1

(1− x)n+1

23. * : Est-il possible de trouver (un) et (vn) telles qu’on ait simultanément :

(a) |un| << |vn|
(b) Σvn CV

4
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(c) Σun DV

24. * : Est-il possible de trouver (un) telle que

(a) Σun CV et Σu2n DV

(b) Σun CV et Σu3n DV

REP pour b) un =
jn

3
√
n
; indication, déterminer un DL de

1
3
√
3n+ 1

+
j

3
√
3n+ 1

+
j2

3
√
3n+ 2

.

25. * : La série des moyennes.

Soit Σun une SATP convergente

(a) On pose vn =
u1 + ...+ un

n
; montrer que Σvn est divergente, sauf si tous les un sont nuls.

(b) On pose wn =
u1 + 2u2 + ...+ nun

n
, xn =

wn
n+ 1

i. Montrer que limwn = 0.

ii. Montrer que
n�

k=1

xk =
n�

k=1

uk −wn+1 ; qu’en déduit-on ?

(c) On pose yn = n
√
u1u2...un ; on rappelle que la moyenne géométrique est majorée par la moyenne arithmétique.

i. Montrer que yn �
wn
n
√
n!
.

ii. Montrer que
(n+ 1)n

n!
� en.

iii. En déduire que Σyn est convergente et que
∞�

n=1

yn � e
∞�

n=1

un.
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